(天津?qū)S茫?020版高考數(shù)學大一輪復習 6.2 等差數(shù)列精練.docx
《(天津?qū)S茫?020版高考數(shù)學大一輪復習 6.2 等差數(shù)列精練.docx》由會員分享,可在線閱讀,更多相關《(天津?qū)S茫?020版高考數(shù)學大一輪復習 6.2 等差數(shù)列精練.docx(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
6.2 等差數(shù)列 挖命題 【考情探究】 考點 內(nèi)容解讀 5年考情 預測熱度 考題示例 考向 關聯(lián)考點 1.等差數(shù)列的有關概念及運算 1.理解等差數(shù)列的概念 2.掌握等差數(shù)列的通項公式和前n項和公式 3.了解等差數(shù)列與一次函數(shù)的關系 2016天津,18 等差數(shù)列的定義、等差數(shù)列的通項公式 等比數(shù)列的性質(zhì)、用放縮法證明不等式 ★★★ 2014天津,11 等差數(shù)列的前n項和 等比中項 2012天津,18 等差數(shù)列的通項公式 數(shù)列求和、數(shù)學歸納法 2.等差數(shù)列的性質(zhì)及其應用 1.能利用等差數(shù)列的性質(zhì)解決相應的問題 2.能在具體的問題情境中識別數(shù)列的等差關系,并能用有關知識解決相應的問題 2011天津文,11 等差數(shù)列的性質(zhì) 等差數(shù)列前n項和的應用 ★★★ 分析解讀 從天津高考的情況來看,本節(jié)一直是高考的熱點,主要考查等差數(shù)列的定義、性質(zhì)、通項公式、前n項和公式、等差中項等相關內(nèi)容.本節(jié)內(nèi)容在高考中的分值約為5分,屬于中低檔題,以選擇題、填空題的形式出現(xiàn). 破考點 【考點集訓】 考點一 等差數(shù)列的有關概念及運算 1.已知等差數(shù)列{an}滿足a1=1,an+2-an=6,則a11等于( ) A.31 B.32 C.61 D.62 答案 A 2.(2013課標Ⅰ,7,5分)設等差數(shù)列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( ) A.3 B.4 C.5 D.6 答案 C 3.已知等差數(shù)列{an}一共有9項,前4項和為3,最后3項和為4,則中間一項的值為( ) A.1720 B.5960 C.1 D.6766 答案 D 考點二 等差數(shù)列的性質(zhì)及其應用 4.在等差數(shù)列{an}中,a1+3a8+a15=120,則a2+a14的值為( ) A.6 B.12 C.24 D.48 答案 D 5.在等差數(shù)列{an}中,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項和,則使Sn取得最大值時n的值為( ) A.21 B.20 C.19 D.18 答案 B 煉技法 【方法集訓】 方法1 等差數(shù)列的基本運算技巧 1.數(shù)列{an}為遞增的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x)=x2-4x+2,則數(shù)列{an}的通項公式為( ) A.an=n-2 B.an=2n-4 C.an=3n-6 D.an=4n-8 答案 B 2.在等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,則S13+2a7=( ) A.17 B.26 C.30 D.56 答案 C 3.(2018上海,6,4分)記等差數(shù)列{an}的前n項和為Sn,若a3=0,a6+a7=14,則S7= . 答案 14 方法2 等差數(shù)列的判定方法 4.(2014陜西,14,5分)已知f(x)=x1+x,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,則f2014(x)的表達式為 . 答案 f2014(x)=x1+2014x 5.已知數(shù)列{an}滿足a1=12,且an+1=2an2+an. (1)求證:數(shù)列1an是等差數(shù)列; (2)若bn=anan+1,求數(shù)列{bn}的前n項和Sn. 解析 (1)證明:∵an+1=2an2+an,∴1an+1=2+an2an, ∴1an+1-1an=12, ∴數(shù)列1an是以2為首項,12為公差的等差數(shù)列. (2)由(1)知an=2n+3,∴bn=4(n+3)(n+4)=41n+3-1n+4, ∴Sn=414-15+15-16+…+1n+3-1n+4 =414-1n+4=nn+4. 方法3 等差數(shù)列前n項和的最值問題的求解方法 6.(2014江西,13,5分)在等差數(shù)列{an}中,a1=7,公差為d,前n項和為Sn,當且僅當n=8時Sn取得最大值,則d的取值范圍為 . 答案 -1,-78 7.設等差數(shù)列{an}的前n項和為Sn,a3+a8+a13=C,a4+a14=2C,其中C<0,則Sn在n等于 時取到最大值. 答案 7 過專題 【五年高考】 A組 自主命題天津卷題組 考點一 等差數(shù)列的有關概念及運算 1.(2014天津,11,5分)設{an}是首項為a1,公差為-1的等差數(shù)列,Sn為其前n項和.若S1,S2,S4成等比數(shù)列,則a1的值為 . 答案 -12 2.(2016天津,18,13分)已知{an}是各項均為正數(shù)的等差數(shù)列,公差為d.對任意的n∈N*,bn是an和an+1的等比中項. (1)設cn=bn+12-bn2,n∈N*,求證:數(shù)列{cn}是等差數(shù)列; (2)設a1=d,Tn=∑k=12n(-1)kbk2,n∈N*,求證:∑k=1n1Tk<12d2. 證明 (1)由題意得bn2=anan+1,有cn=bn+12-bn2=an+1an+2-anan+1=2dan+1,因此cn+1-cn=2d(an+2-an+1)=2d2, 所以{cn}是等差數(shù)列. (2)Tn=(-b12+b22)+(-b32+b42)+…+(-b2n-12+b2n2) =2d(a2+a4+…+a2n)=2dn(a2+a2n)2=2d2n(n+1). 所以∑k=1n1Tk=12d2∑k=1n1k(k+1)=12d2∑k=1n1k-1k+1=12d21-1n+1<12d2. 思路分析 (1)根據(jù)等差數(shù)列和等比數(shù)列的性質(zhì),建立方程關系,根據(jù)條件求出數(shù)列{cn}的通項公式,結(jié)合等差數(shù)列的定義進行證明即可. (2)求出Tn=∑k=12n(-1)kbk2的表達式,利用裂項相消法求解,結(jié)合放縮法進行不等式的證明即可. 評析本題主要考查遞推數(shù)列的應用以及數(shù)列與不等式的綜合,根據(jù)等比數(shù)列和等差數(shù)列的性質(zhì)分別求出對應的通項公式以及利用裂項相消法進行求解是解決本題的關鍵.綜合性較強是,有一定的難度. 3.(2012天津,18,13分)已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10. (1)求數(shù)列{an}與{bn}的通項公式; (2)記Tn=anb1+an-1b2+…+a1bn,n∈N*,證明Tn+12=-2an+10bn(n∈N*). 解析 (1)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q. 由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d.由條件,得方程組2+3d+2q3=27,8+6d-2q3=10,解得d=3,q=2. 所以an=3n-1,bn=2n,n∈N*. (2)證法一: 由(1)得Tn=2an+22an-1+23an-2+…+2na1,① 2Tn=22an+23an-1+…+2na2+2n+1a1.② 由②-①,得Tn=-2(3n-1)+322+323+…+32n+2n+2 =12(1-2n-1)1-2+2n+2-6n+2=102n-6n-10. 而-2an+10bn-12=-2(3n-1)+102n-12=102n-6n-10,故Tn+12=-2an+10bn,n∈N*. 證法二:數(shù)學歸納法 (i)當n=1時,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立; (ii)假設當n=k時等式成立,即Tk+12=-2ak+10bk,則當n=k+1時有: Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1 =ak+1b1+q(akb1+ak-1b2+…+a1bk)=ak+1b1+qTk =ak+1b1+q(-2ak+10bk-12) =2ak+1-4(ak+1-3)+10bk+1-24 =-2ak+1+10bk+1-12, 即Tk+1+12=-2ak+1+10bk+1.因此n=k+1時等式也成立. 由(1)和(2),可知對任意n∈N*,Tn+12=-2an+10bn成立. 考點二 等差數(shù)列的性質(zhì)及其應用 (2011天津文,11,5分)已知{an}是等差數(shù)列,Sn為其前n項和,n∈N*.若a3=16,S20=20,則S10的值為 . 答案 110 B組 統(tǒng)一命題、省(區(qū)、市)卷題組 考點一 等差數(shù)列的有關概念及運算 1.(2018課標Ⅰ,4,5分)記Sn為等差數(shù)列{an}的前n項和.若3S3=S2+S4,a1=2,則a5=( ) A.-12 B.-10 C.10 D.12 答案 B 2.(2017課標Ⅲ,9,5分)等差數(shù)列{an}的首項為1,公差不為0.若a2,a3,a6成等比數(shù)列,則{an}前6項的和為( ) A.-24 B.-3 C.3 D.8 答案 A 3.(2016課標Ⅰ,3,5分)已知等差數(shù)列{an}前9項的和為27,a10=8,則a100=( ) A.100 B.99 C.98 D.97 答案 C 4.(2015課標Ⅰ,7,5分)已知{an}是公差為1的等差數(shù)列,Sn為{an}的前n項和.若S8=4S4,則a10=( ) A.172 B.192 C.10 D.12 答案 B 5.(2015重慶,2,5分)在等差數(shù)列{an}中,若a2=4,a4=2,則a6=( ) A.-1 B.0 C.1 D.6 答案 B 6.(2014福建,3,5分)等差數(shù)列{an}的前n項和為Sn,若a1=2,S3=12,則a6等于( ) A.8 B.10 C.12 D.14 答案 C 7.(2017課標Ⅱ,15,5分)等差數(shù)列{an}的前n項和為Sn,a3=3,S4=10,則∑k=1n1Sk= . 答案 2nn+1 8.(2016江蘇,8,5分)已知{an}是等差數(shù)列,Sn是其前n項和.若a1+a22=-3,S5=10,則a9的值是 . 答案 20 9.(2015安徽,13,5分)已知數(shù)列{an}中,a1=1,an=an-1+12(n≥2),則數(shù)列{an}的前9項和等于 . 答案 27 考點二 等差數(shù)列的性質(zhì)及其應用 1.(2017課標Ⅰ,4,5分)記Sn為等差數(shù)列{an}的前n項和.若a4+a5=24,S6=48,則{an}的公差為( ) A.1 B.2 C.4 D.8 答案 C 2.(2015課標Ⅱ,5,5分)設Sn是等差數(shù)列{an}的前n項和.若a1+a3+a5=3,則S5=( ) A.5 B.7 C.9 D.11 答案 A 3.(2014遼寧,9,5分)設等差數(shù)列{an}的公差為d.若數(shù)列{2a1an}為遞減數(shù)列,則( ) A.d>0 B.d<0 C.a1d>0 D.a1d<0 答案 D 4.(2015廣東,10,5分)在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=25,則a2+a8= . 答案 10 C組 教師專用題組 1.(2013課標Ⅰ,7,5分)設等差數(shù)列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( ) A.3 B.4 C.5 D.6 答案 C 2.(2013遼寧,4,5分)下面是關于公差d>0的等差數(shù)列{an}的四個命題: p1:數(shù)列{an}是遞增數(shù)列; p2:數(shù)列{nan}是遞增數(shù)列; p3:數(shù)列ann是遞增數(shù)列; p4:數(shù)列{an+3nd}是遞增數(shù)列. 其中的真命題為( ) A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p4 答案 D 3.(2015陜西,13,5分)中位數(shù)為1010的一組數(shù)構成等差數(shù)列,其末項為2015,則該數(shù)列的首項為 . 答案 5 【三年模擬】 一、選擇題(每小題5分,共35分) 1.(2019屆天津河西期中,2)在等差數(shù)列{an}中,a1=2,a3+a5=10,則a7=( ) A.5 B.8 C.10 D.14 答案 B 2.(2018天津一中5月月考,4)已知數(shù)列{an}是等差數(shù)列,m,p,q為正整數(shù),則“p+q=2m”是“ap+aq=2am”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 答案 A 3.(2017天津一中5月月考,5)在等差數(shù)列{an}中,a3+a6+a9=54,設數(shù)列{an}的前n項和為Sn,則S11=( ) A.18 B.99 C.198 D.297 答案 C 4.(2017天津?qū)嶒炛袑W模擬,5)已知等差數(shù)列{an}的前n項和為Sn,且2(a1+a3+a5)+3(a8+a10)=36,則S11=( ) A.66 B.55 C.44 D.33 答案 D 5.(2017天津南開三模,7)已知等差數(shù)列{an}的前n項和為Sn,且S2=10,S5=55,則過點P(n,an),Q(n+2,an+2)(n∈N*)的直線的斜率為( ) A.4 B.14 C.-4 D.-14 答案 A 6.(2018天津南開二模,7)已知Sn是數(shù)列{an}的前n項和,a1=2,a2=4,a3=6,數(shù)列{an+an+1+an+2}是公差為2的等差數(shù)列,則S25=( ) A.233 B.282 C.466 D.650 答案 B 7.(2019屆天津耀華中學統(tǒng)練(2),7)在等差數(shù)列{an}中,其前n項和是Sn,若S15>0,S16<0,則在S1a1,S2a2,S3a3,…,S15a15中最大的是( ) A.S1a1 B.S9a9 C.S8a8 D.S15a15 答案 C 二、填空題(每小題5分,共10分) 8.(2019屆天津七校聯(lián)考,10)在等差數(shù)列{an}中,S5=25,a2=3,則a5= . 答案 9 9.(2019屆天津耀華中學第二次月考,10)記Sn為等差數(shù)列{an}的前n項和,若3S3=S2+S4,a1=2,則a5= . 答案 -10 三、解答題(共35分) 10.(2017天津和平二模,18)已知等差數(shù)列{an}滿足a2=5,a5+a9=30,{an}的前n項和為Sn. (1)求數(shù)列{an}的通項公式及前n項和Sn; (2)令bn=1Sn(n∈N*),求數(shù)列{bn}的前n項和Tn. 解析 (1)設等差數(shù)列{an}的公差為d,由a2=5,a5+a9=30可得a1+d=5,2a1+12d=30,解得a1=3,d=2, ∴an=a1+(n-1)d=3+2(n-1)=2n+1, ∴Sn=n(a1+an)2=n(3+2n+1)2=n(n+2)=n2+2n. (2)由(1)可得bn=1Sn=1n(n+2)=121n-1n+2, ∴數(shù)列{bn}的前n項和Tn=121-13+12-14+13-15+…+1n-1-1n+1+1n-1n+2 =121+12-1n+1-1n+2=34-12n+2-12n+4. 解題分析 本題考查了等差數(shù)列的通項公式、前n項和公式和裂項相消法求和,屬于中檔題. 11.(2017天津和平四模,18)已知等差數(shù)列{an}滿足a2=3,a4+a7=20. (1)求數(shù)列{an}的通項公式及前n項和Sn; (2)證明:∑k=1n1Sk<53. 解析 (1)設等差數(shù)列{an}的公差為d, ∵等差數(shù)列{an}滿足a2=3,a4+a7=20, ∴a1+d=3,2a1+9d=20,解得a1=1,d=2, ∴an=a1+(n-1)d=1+2(n-1)=2n-1(n∈N*), Sn=na1+n(n-1)2d=n+n(n-1)=n2(n∈N*). (2)證明:∵Sn=n2, ∴∑k=1n1Sk=112+122+132+…+1n2. ∵k2>k2-14>0(k∈N*), ∴1k2<1k2-14,k∈N*, ∴1k2<44k2-1=212k-1-12k+1, ∴∑k=1n1Sk=112+122+132+…+1n2<1+213-15+215-17+…+212k-1-12k+1=1+213-12k+1=53-22k+1<53, ∴∑k=1n1Sk<53. 解題分析 本題考查等差數(shù)列的通項公式及前n項和公式,考查數(shù)列不等式的證明,涉及裂項相消法、放縮法等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,屬中檔題. 12.(2018天津河西三模,18)已知數(shù)列{an}的前n項和為Sn,數(shù)列Snn是首項為1,公差為2的等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)設數(shù)列{bn}滿足a1b1+a2b2+…+anbn=5-(4n+5)12n,求數(shù)列{bn}的前n項和Tn. 解析 (1)由數(shù)列Snn是首項為1,公差為2的等差數(shù)列,得Snn=1+2(n-1)=2n-1,則有Sn=n(2n-1)=2n2-n. 當n=1時,a1=S1=1, 當n≥2時,an=Sn-Sn-1=4n-3, a1=1符合an=4n-3, 故an=4n-3,n∈N*. (2)根據(jù)題意,數(shù)列{bn}滿足 a1b1+a2b2+…+anbn=5-(4n+5)12n①, 當n=1時,a1b1=5-(4+5)12=12,而a1=1,則b1=2, 易知a1b1+a2b2+…+an-1bn-1=5-(4n+1)12n-1(n≥2)②, ①-②可得anbn=(4n-3)12n, 又an=4n-3,所以bn=2n(n≥2), 又b1=2符合bn=2n, 則bn=2n(n∈N*), 故數(shù)列{bn}是首項為2,公比為2的等比數(shù)列, 則Tn=2(1-2n)1-2=2n+1-2,n∈N*.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 天津?qū)S?020版高考數(shù)學大一輪復習 6.2 等差數(shù)列精練 天津 專用 2020 高考 數(shù)學 一輪 復習 等差數(shù)列 精練
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-6386274.html