外文翻譯--機器人機械手 翻譯【中英文文獻譯文】
外文翻譯--機器人機械手 翻譯【中英文文獻譯文】,中英文文獻譯文,外文翻譯,機器人機械手,翻譯【中英文文獻譯文】,外文,翻譯,機器人,機械手,中英文,文獻,譯文
畢業(yè)設計(論文)外文資料翻譯
系 別: 機電信息系
專 業(yè): 機械設計制造及其自動化
班 級:
姓 名:
學 號:
外文出處: 《Manufacturing Engineering
and Technology-Machining》
附 件: 1. 原文; 2. 譯文
2013年03月
外文原文
Robot manipulators
The industrial Robot manipulator is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial Robot manipulators was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial Robot manipulator can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robot manipulators can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society .
The Robot manipulator can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the Robot manipulator arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off .
The basic terminology of Robot manipulatoric systems is introduced in the following :
1. A Robot manipulator is a reprogrammable , multifunctional manipulator designed to move parts , materials , tools , or special devices through variable programmed motions for the performance of a variety of different task . This basic definition leads to other definitions , presented in the following paragraphs , that give a complete picture of a Robot manipulatoric system .
2. Preprogrammed locations are paths that the Robot manipulator must follow to accomplish work . At some of these locations , the Robot manipulator will stop and perform some operation , such as assembly of parts , spray painting , or welding . These preprogrammed locations are stored in the Robot manipulator’s memory and are recalled later for continuous operation . Furthermore , these preprogrammed locations , as well as other program data , can be changed later as the work requirements change . Thus , with regard to this programming feature , an industrial Robot manipulator is very much like a computer , where data can be stored and later recalled and edited .
3. The manipulator is the arm of the Robot manipulator . It allows the Robot manipulator to bend , reach , and twist . This movement is provided by the manipulator’s axes , also called the degrees of freedom of the Robot manipulator . A Robot manipulator can have from 3 to 16 axes . The term degrees of freedom of freedom will always relate to the number of axes found on a Robot manipulator .
4. The tooling and grippers are not part of the Robot manipulatoric system itself ; rather , they are attachments that fit on the end of the Robot manipulator’s arm . These attachments connected to the end of the Robot manipulator’s arm allow the Robot manipulator to lift parts , spot-weld , paint , arc-weld , drill , deburr , and do a variety of tasks , depending on what is required of the Robot manipulator .
5. The Robot manipulatoric system can also control the work cell of the operating Robot manipulator . the work cell of the Robot manipulator is the total environment in which the Robot manipulator must perform its task . Included within this cell may be the controller , the Robot manipulator manipulator , a work table , safety features , or a conveyor . All the equipment that is required in order for the Robot manipulator to do its job is included in the work cell . In addition , signals from outside devices can communicate with the Robot manipulator in order to tell the Robot manipulator when it should assemble parts , pick up parts , or unload parts to a conveyor .
The Robot manipulatoric system has three basic components : the manipulator , the controller , and the power source .
A . Manipulator
The manipulator , which does the physical work of the Robot manipulatoric system , consists of two sections : the mechanical section and the attached appendage . The manipulator also has a base to which the appendages are attached . Fig.1 illustrates the connection of the base and the appendage of a Robot manipulator .
The base of the manipulator is usually fixed to the floor of the work area . Sometimes , though , the base may be movable . In this case , the base is attached to either a rail or a track , allowing the manipulator to be moved from one location to another .
As mentioned previously , the appendage extends from the base of the Robot manipulator . The appendage is the arm of the Robot manipulator . It can be either a straight , movable arm or a jointed arm . the jointed arm is also known as an articulated arm .
The appendages of the Robot manipulator manipulator give the manipulator its various axes of motion . These axes are attached to a fixed base , which , in turn , is secured to a mounting . This mounting ensures that the manipulator will remain in one location。
At the end of the arm , a wrist is connected . The wrist is made up of additional axes and a wrist flange . The wrist flange allows the Robot manipulator user to connect different tooling to the wrist for different jobs .
The manipulator’s axes allow it to perform work within a certain area . This area is called the work cell of the Robot manipulator , and its size corresponds to the size of the manipulator . Fig.2 illustrates the work cell of a typical assembly Robot manipulator . As the Robot manipulator’s physical size increases , the size of the work cell must also increase .
The movement of the manipulator is controlled by actuators , or drive systems . The actuators , or drive system , allows the various axes to move within the work cell . The drive system can use electric , hydraulic , or pneumatic power . The energy developed by the drive system is converted to mechanical power by various mechanical drive systems .The drive systems are coupled through mechanical linkages .These linkages, in turn , drive the different axes of the Robot manipulator . The mechanical linkages may be composed of chains , gears ,and ball screws.
B. Controller
The controller in the Robot manipulatoric system is the heart of the operation. The controller stores preprogrammed information for later recall, control peripheral devices, and communicates with computers within the plant for constant updates in production
The controllers is used to control the Robot manipulator manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendent. This information is stored in the memory of the controller for later recall. The controller stores all program data of the Robot manipulatoric system. It can store several different programs, and any of these programs can be edited.
The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple Robot manipulatoric system. The controllers found on the majority of Robot manipulatoric systems are more complex devices and represent state-of-the-art electronics. That is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to be very flexible in its operation.
The controller can send electric signals over communication lines that allow it to talk with the various axes of manipulator. This two-way communication between the Robot manipulator manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the Robot manipulator’s wrist.
The controller also has the job of communicating with the different plant computers . The communication link establishes the Robot manipulator as part of a computer-assisted manufacturing (CAM) system.
As the basic definition stated , the Robot manipulator is a reprogrammable , multifunctional manipulator . Therefore , the controller must contain some type of memory storage . The microprocessor-based systems operate in conjunction with solid-state memory devices . These memory devices may be magnetic bubbles , random-access memory , floppy disks , or magnetic tape . Each memory storage device stores program information for later recall or for editing .
C. Power supply
The power supply is the unit that supplies power to the controller and the manipulator . Two types of power are delivered to the Robot manipulatoric system . One type of power is the AC power for operation of the controller . The other type of power is used for driving the various axes of the manipulator . For example , if the Robot manipulator manipulator id controlled by hydraulic or pneumatic manipulator drives , control signals are sent to these devices , causing motion of the Robot manipulator .
For each Robot manipulatoric system , power is required to operate the manipulator . This power can be developed from either a hydraulic power source , a pneumatic power source , or an electric power source , These power sources are part of the total components of the Robot manipulatoric work cell .
外文翻譯
機器人機械手
工業(yè)機器人機械手是在生產(chǎn)環(huán)境中用以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線工作,或能做那些對于工人來說是危險的工作,例如:第一代工業(yè)機器人機械手是用來在核電站中更換核燃料棒,如果人去做這項工作,將會遭受有害射線的輻射。工業(yè)機器人機械手亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印刷板,這樣,工人就能從這項乏味的常規(guī)工作中解放出來。機器人機械手也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應用場合下履行職能。
機器人機械手可以認為是將手臂末端的工具、傳感器和手爪移動到程序指定位置的一種機器。當機器人機械手到達位置后,它將執(zhí)行某種任務。這些任務可以是焊接、密封、機器裝料、拆裝以及裝配工作。除了編程以及系統(tǒng)的開停之外,一般來說這些工作可以在無人干預下完成。
如下敘述的是機器人機械手系統(tǒng)基本術語:
1.機器人機械手是一個可編程、多功能的機械手,通過給要完成的不同任務編制各種動作,它可以運動零件、材料、工具以及特殊裝置。這個基本定義引導出后續(xù)段落的其他定義,從而描繪出一個完整的機器人機械手系統(tǒng)。
2.預編程位置點是機器人機械手為完成工作而必須跟蹤的軌跡。在某些位置點上機器人機械手將停下來做某些操作,如裝配零件、噴涂油漆或者焊接。這些預編程點貯存在機器人機械手的貯存器中,并為后續(xù)的連續(xù)操作所調用,而且這些預編程點像其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因且,正是這種可編程的特征,一個工業(yè)機器人機械手很像一臺計算機,數(shù)據(jù)可以在這里儲存、后續(xù)調用與編輯。
3.機械手是機器人機械手的手臂,它使機器人機械手能彎屈、延伸和旋轉,提供這些運動的是機械手的軸,亦是所謂的機械手的自由度。一個機械人能有3-16軸,自由度一詞總是與機器人機械手軸數(shù)相關。
4.工具和手爪不是機器人機械手自身組成部分,但它們是安裝在機器人機械手手臂末端的附件。這些連在機器人機械手手臂末端的附件可使機器人機械手抬起工件、點焊、刷漆、電焊弧、鉆孔、打毛刺以及根據(jù)機器人機械手的要求去做各種各樣的工作。
5.機器人機械手系統(tǒng)還可以控制機器人機械手的工作單元,工作單元是機器人機械手執(zhí)行任務所處的整體環(huán)境,該單元包括控制器、機械手、工作平臺、安全保護裝置或者傳輸裝置。所有這些為保證機器人機械手完成自己任務而必需的裝置都包括在這一工作單元中。另外,來自外設的信號與機器人機械手何時裝配工作、取工件或放工件到傳輸裝置上。
機器人機械手系統(tǒng)有三個基本不見:機械手、控制器和動力源。
A.機械手
機械手做機器人機械手系統(tǒng)中粗重工作,它包括兩個部分:機構和附件,機械手也有聯(lián)接附件基座,如下圖所示一機器人機械手基座與附件之間的聯(lián)接情況。
機械手基座通常固定在工作區(qū)域的地基上,有時基座也可以移動,在這種情況下基座安裝在導軌或者軌道上,允許機械手從一個位置移動到另外一個位置。
正如前面所提到的那樣,附件從機器人機械手基座上延伸出來,附件就是
機器人機械手的手臂,它可以是直線型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關節(jié)型手臂。
機械臂使機械手產(chǎn)生各軸的運動。這些軸連在一個安裝基座上,然后再練到托架上,托架確保機械手停留在某一位置。
在手臂的末端上,連接著手腕,手腕由輔助軸和手腕凸緣組成,手腕是讓機器人機械手用戶在手腕凸緣上安裝不同工具來做不同種工作。
機器手的軸使機械手在某一區(qū)域內執(zhí)行任務,我們將這個區(qū)域為機器人機械手的工作單元,該區(qū)域的大小與機械手的尺寸相對應,一個典型裝配機器人機械手的工作單元。隨著機器人機械手機械結構尺寸的增加,工作單元的范圍也必須相應增加。
機械手的運動由執(zhí)行元件或驅動系統(tǒng)來控制。執(zhí)行元件或驅動系統(tǒng)允許各軸在工作單元內運動。驅動系統(tǒng)可用電氣液壓和氣壓動力,驅動系統(tǒng)所產(chǎn)生的動力經(jīng)機構轉變?yōu)闄C械能,驅動系統(tǒng)與機械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機械傳動鏈驅動著機器人機械手的各軸。
B.控制器
機器人機械手控制器是工作單元的核心。控制器儲存著預編程序供后續(xù)條用、控制外設,及與廠內計算機進行通訊以滿足產(chǎn)品經(jīng)常更新的需要。
控制器用于控制機械手運動和在工作單元內控制機器人機械手外設。用戶可通過手持的示教盒將機械手運動的程序編入控制器。這些信息儲存在控制器的存儲器中以備后續(xù)調用,控制器存儲了機器人機械手系統(tǒng)的所有編程數(shù)據(jù),它能存儲幾個不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內與外設進行通信。例如控制器有一個輸入端,它能標識某個機加工操作何時完成。當該加工循環(huán)完成后,輸入端接通,告訴控制器定位機械手以便能抓取以加工工件,隨后機械手抓取一未加工工件,將其放置在機床上。接著,控制器給機床開始加工的信號。
控制器可以由根據(jù)時間順序而步進的機械式輪轂組成,這種類型的控制器可用在非常簡單的機械系統(tǒng)中。用于大多數(shù)機器人機械手系統(tǒng)中的控制器代表現(xiàn)代電子學的水平,是更復雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位,16位或32位處理器。它們可以使得控制器在操作工程中顯得非常柔性。
控制器能通過通信線發(fā)送電信號,使它能與機器手各軸交流信息,在機器人機械手的機械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器亦能控制安裝在機器人機械手手腕上的任何工具。
控制器也有與廠內各計算機進行通信的任務,這種通信聯(lián)系使機器人機械手成為計算機輔助制造(CAM)系統(tǒng)的一個組成部分。
存儲器?;谖⑻幚砥鞯南到y(tǒng)運行時要與固態(tài)的存儲裝置相連,這些存儲裝置可以是磁泡,隨機存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續(xù)調用和編輯。
C.動力源
動力源是給機器人機械手和機器手提供動力的單元。傳給機器人機械手系統(tǒng)的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅動機械手各軸的動力源,例如,如果機器人機械手的機械手是由液壓和氣壓驅動的,控制信號便傳送到這些裝置中,驅動機器人機械手運動。
對于每一個機器人機械手系統(tǒng),動力是用來操縱機械手的。這些動力可來源于液壓動力源、氣壓動力源或電源,這些能源是機器人機械手工作單元整體的一部分。
收藏